Diagonalisation de matrices symétriques

Définitions

Une matrice $Q \in M_{n \times n}$ est **orthogonale** si $Q^T Q = I_n$.

Une matrice $A \in M_{n \times n}$ est **symétrique** si $A^T = A$.

Théorème spectral

Une matrice $A \in M_{n \times n}$ est symétrique si et seulement si elle est diagonalisable en base orthonormale, c'est à dire qu'on peut écrire

$$A = PDP^T$$
, avec $D \in M_{n \times n}$ diagonale, $P \in M_{n \times n}$ orthogonale.

De plus, les valeurs propres de A sont **réelles**. Pour chaque valeurs propre, la dimension algébrique et la dimension géométrique sont égales.

Décomposition en valeurs singulières

Définition

Les valeurs singulières de $A \in M_{m \times n}$ sont définies par $\sigma_i \stackrel{\text{def}}{=} \sqrt{\lambda_i} = ||A\vec{v_i}||$ où λ_i sont les valeurs propres (toujours positives) de A^TA et $\vec{v_i}$ est un vecteur propre unitaire de A^TA associé à λ_i .

Théorème

Une matrice $A \in M_{m \times n}$ de rang k peut toujours s'écrire $A = U \Sigma V^T$ avec

- $\Sigma \in M_{m \times n}$ diagonale par blocs;
- $V \in M_{n \times n}$ orthogonale;
- $U \in M_{m \times m}$ orthogonale.

Décomposition en valeurs singulières

 $\Sigma \in M_{m \times n}$ est la matrice des valeurs singulières de A:

$$\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \in M_{m \times n}, \quad \text{avec} \quad D = \begin{pmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_k \end{pmatrix}, \quad \sigma_1 \geqslant \cdots \geqslant \sigma_k > 0,$$

où σ_i sont les valeurs singulières **non-nulles** de A.

$$V = (\vec{v}_1 \dots \vec{v}_n) \in M_{n \times n}$$
 est la matrice **orthogonale** des vecteurs propres de $A^T A$, classées selon l'ordre décroissant de ses valeurs propres.

 $U = \begin{pmatrix} A\vec{v}_1 & \dots & A\vec{v}_k & \vec{u}_{k+1} & \dots & \vec{u}_m \end{pmatrix} \in M_{m \times m}$ est la matrice **orthogonale** de l'image des vecteurs propres de A^TA , complétée, si nécessaire (quand k < m), en une base de \mathbb{R}^m par des vecteurs unitaires.